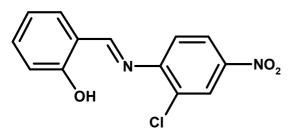


Vol.22, No. 4, Winter 1393/2015 Pages 103 to 108

Crystal Structure of Schiff base Compound 2-[(2-chloro-4-nitrophenyl) iminomethyl] phenol

A. Dehno Khalaji^{1*}, K. Fejfarova², M. Dusek²

1- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran 2- Institute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic


(Received: 1/8/2013, in revised form: 11/10/2013)

Abstract: Single crystals of Schiff base compound 2-[(2-chloro-4-nitrophenyl) iminomethyl] phenol (1) were grown by the slow evaporation technique at room temperature. The crystal structure of the title compound was determined by single crystal X-ray diffraction. The title compound crystallizes in the monoclinic system, space group P2₁, with two symmetry independent molecules. Intramolecular O-H···N hydrogen bonds form S(6) motifs in each molecule. Intermolecular C-H···O interactions connect the molecules into a three dimensional network.

Keywords: Schiff base; crystal structure; monoclinic; inter- and intra-molecular interactions.

Introduction

Recently, an interest in Schiff-bases derived from o-hydroxylaldehyde aromatic has increased significantly due to their structures [1-3] and applications [4-9]. These compounds show tautomerism via the intramolecular proton transfer from the oxygen atom of OH to the neighboring nitrogen atom of the C = N group [4]. Although, interaction between anion and o-hydroxy Schiff bases is weaker than the interaction of metal ions and o-hydroxy, several o-hydroxy Schiff bases groups used as anion receptors [6, 9]. As a continuation of our previous work on Schiff bases [10-13], in this work, we report the crystal structure of Schiff base compound N-(2-chloro-4nitro-phenyl) salicylaldehyde-imine (1) (Scheme1).

Scheme 1 Chemical structure of 2-[(2-chloro-4-nitrophenyl) iminomethyl] phenol (1).

Experimental

All reagents and solvents for synthesis and analysis were commercially available and used as received.

Synthesis of 2-[(2-chloro-4-nitrophenyl) iminomethyl] phenol (1)

The preparation of 1 was done according to published method [14, 15]. A solution of salicylaldehyde (0.01 mol) in 25 ml methanol was stirred for about 10 min. To this stirring solution, a solution of 2-chloro-4-nitroaniline (0.01 mol) in 20 ml methanol was added dropwise under constant stirring. The mixture was refluxed for 2 h and then allowed to cool overnight to the room temperature. Yellow crystals were grown by the slow evaporation technique at the room temperature. Yield: 84%. FT-IR (cm⁻¹, KBr). 3352 ν (OH or H₂O), 1621 ν (C = N), 1278 ν (C-O), 1394 ν (C-O), 1565 Ph ring C = C.

X-ray crystallography

Crystallographic measurements were done at 120 K with four circle CCD diffractometer Gemini of Oxford diffraction, Ltd., with mirrors-collimated Cu K α radiation (λ = 1.54184 Å). The crystal structure was solved by direct methods with program SIR2002 [16] and refined with the Jana2006 program package [17] by full-matrix

^{*} Corresponding author: Tel.: (017) 32245882, Fax: (017) 32245964, E-mail address: ad.khalaji@gu.ac.ir

Downloaded from ijcm.ir on 2025-06-13]

least-squares technique on F². Hydrogen atoms were mostly discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice bonded to carbon kept in ideal positions during the refinement while positions of hydrogen atoms of hydroxyl groups were freely refined with a distance restraint 0.85 Å. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2U_{eq} of the parent atom. Crystallographic data and details of the data collection and structure refinements are listed in Table 1.

The sample used for the measurement was twinned with twinning operation $180\,^\circ$ rotation about c*. This leads to the twinning matrix -1 0 0 (the first row) / 0 -1 0 / 0.5 0 1 applied to the column of the indices and, in the diffraction pattern, it generates only fully overlapped and fully separated reflections. Therefore, we could use for the refinement the stronger domain and the

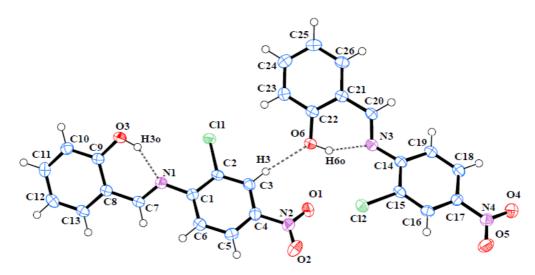
twinning matrix to scale the fully overlapped reflections.

The structure was found to be noncentrosymmetric. The missing center of symmetry was used as an additional twinning operation, thus generating a four-fold twin from the original twofold twin: twin domain A [twinning operation 1 0 0 / 0 1 0 / 0 0 1, refined volume fraction 0.428(18)]; twin domain B [twinning operation -1 0 0 / 0 -1 0 / 0 0 -1 refined volume fraction 0.146(11)]; twin domain A', [twinning operation -1 0 0 / 0 -1 0 / 0 0 -1 refined volume fraction 0.304(9)] and twin domain B', [twinning operation 1 0 0 / 0 1 0 / 0 0 1 refined volume fraction 0.122(11)]. The ratio of the twinning fractions between the original and inverted twin domain is 0.710 for A':A and 0.836 for B:B'. These numbers can be understood as partial Flack parameters. The molecular structure plots were prepared by ORTEP III [18].

Table 1 Crystallographic and structure refinement of 1.

Formula weight Crystal size (mm³) Crystal system Space group Density (gcm³) wave lenght $T(K)$ $a(Å)$ $b(Å)$ $c(Å)$ $b(Å)$ $c(Å)$ $g(C)$ $g(A)$ g	Empirical formula	$C_{13}H_9CIN_2O_3$
Crystal size (mm³) Crystal system Space group Density (gcm⁻³) wave lenght $T(K)$ $a(\mathring{A})$ $b(\mathring{A})$ $b(A$	-	=, ,,,,
Crystal system $P2_1$ Space group 1.5368 Density (gcm-3) 1.5418 (Cu Ka) wave lenght 1.5418 $T(K)$ 120 a (Å) 7.3144(2) b (Å) 11.8839(3) c (Å) 13.8725(4) $β$ (°) 97.546(2) V (ų) 1195.40(6) Z 4 $μ$ (mm-1) 2.90 T_{min} 0.492 T_{max} 1.0 Measured reflections 14843 Independent reflections 14843 Reflection with $I ≥ 3σ(I)$ 4165 S 1.61 S 1.61 S 1.61 S 0.024 S 0.031 S 0.031 S 0.031 S 0.080 S 0.080 S 0.13 S 0.13 S 0.13 S 0.13 <td><u> </u></td> <td></td>	<u> </u>	
Space group Density (gcm ⁻³) wave lenght $T(K)$ $a(A)$ $b(A)$ $b(A)$ $c(A)$ $b(A)$ $c(A)$ $g(A)$ $g(A$	-	Monoclinic
Density (gcm ⁻³) wave lenght $T(K)$ $a(Å)$ $b(Å)$ $c(Å)$ $b(Å)$ $c(Å)$ $g(^{\circ})$ $f(^{\circ})$, ,	$P2_1$
wave lenght $T(K)$ 1.5418 $Cu(Ka)$ 1.5418 $T(K)$ 120 $7.3144(2)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.8439(1)$ $11.8839(3)$ $11.849(1)$ $11.8839(3)$ $11.849(1)$ $11.8839(3)$ $11.849(1)$ $11.8839(3)$ $11.849(1)$ $11.8839(3)$ $11.849(1)$ $11.8839(3)$ $11.849(1)$ $11.8839(3)$ $11.849(1)$ $11.8839(3)$ $11.849(1)$ $11.8839(3)$ $11.849(1)$ $11.839(1)$ $11.839(1)$ $11.849(1)$ $11.839(1)$ $11.839(1)$ $11.849(1)$ $11.839(1)$ $11.839(1)$ $11.849(1)$ $11.839(1)$ $11.839(1)$ $11.849(1)$ $11.839(1)$ $11.839(1)$ $11.849(1)$ $11.839(1)$ $11.839(1)$ $11.849(1)$ $11.839(1)$ $11.839(1)$ $11.849(1)$ $11.839(1)$ $11.839(1)$ $11.849(1)$ $11.$		1.5368
T(K) a (Å) 120 a(Å) 7.3144(2) b(Å) 11.8839(3) c(Å) 13.8725(4) β(°) 97.546(2) $V(Å^3)$ 1195.40(6) Z 4 2.90 T_{min} 0.492 T_{max} 1.0 Measured reflections 14843 Independent reflections 4222 Reflection with $I \ge 3\sigma(I)$ 4165 S 0.024 S 0.024 S 1.61 S 0.024 S 1.61 S 0.031 S 1.62 S 1.63 S 1.64 S 1.65 S 1.61 S 1.62 S 1.61 S 1.62 S 1.61 S 1.62 S 1.63 S 1.61 S 1.62 S 1.61 S 1.62 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.61 S 1.62 S 1.61 S 1.62 S 1.63 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.67 S 1.68 S 1.69 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.67 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.67 S 1.67 S 1.68 S 1.69 S 1.61 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.67 S 1.67 S 1.68 S 1.69 S 1.61 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.67 S 1.77 S 1.77	, , ,	1.5418 (Cu <i>Kα</i>)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	1.5418
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 1	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *	7.3144(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11.8839(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *	13.8725(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	97.546(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	` '	1195.40(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.492
Independent reflections Reflection with $I \ge 3\sigma(I)$ 4222 4165 4165 S 0.024 5 1.61 S 1.61 S 1.62 S 1.61 S 1.62 S 1.63 S 1.64 S 1.65 S 1.69 S 1.69 S 1.60		1.0
Reflection with $I \ge 3\sigma(I)$ 4222 R_{int} 0.024 S 1.61 Goodness of fit 1.62 $F(000)$ 568 $R[F^2 > 3\sigma(F^2)]$ 0.031 $wR(F^2)$ 0.080 Flack parameter 0.71, 0.84 Parameters 352 $\Delta \rho_{max}$ (eÅ-3) 0.13 $\Delta \rho_{min}$ (eÅ-3) -0.12		14843
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	4222
Goodness of fit S		4165
Goodness of fit F(000) $R[F^2>3\sigma(F^2)]$ $wR(F^2)$ Flack parameter Parameters $\Delta \rho_{\text{max}} (\text{eÅ}^{-3})$ $\Delta \rho_{\text{min}} (\text{eÅ}^{-3})$ Theta range for data collection		0.024
F(000) 1.62 $R[F^2>3\sigma(F^2)]$ 568 $wR(F^2)$ 0.031 $wR(F^2)$ 0.080 Flack parameter 0.71, 0.84 Parameters 352 $\Delta\rho_{\max}$ (eÅ ⁻³) 0.13 $\Delta\rho_{\min}$ (eÅ ⁻³) -0.12	~	1.61
$R[F^2>3\sigma(F^2)]$ 568 $wR(F^2)$ 0.031 $wR(F^2)$ 0.080 Flack parameter 0.71, 0.84 Parameters 352 $\Delta\rho_{max}$ (eÅ ⁻³) 0.13 $\Delta\rho_{min}$ (eÅ ⁻³) -0.12		1.62
$wR(F^2)$ 0.031 Flack parameter 0.71, 0.84 Parameters 352 $\Delta \rho_{max}$ (eÅ ⁻³) 0.13 $\Delta \rho_{min}$ (eÅ ⁻³) -0.12	* /	568
Flack parameter Parameters $\Delta \rho_{max} (e \mathring{A}^{-3})$ $\Delta \rho_{min} (e \mathring{A}^{-3})$ Theta range for data collection 0.71, 0.84 352 0.13 -0.12		0.031
Flack parameter 0.71, 0.84 Parameters 352 $\Delta \rho_{max} (e \mathring{A}^{-3}) 0.13$ $\Delta \rho_{min} (e \mathring{A}^{-3}) -0.12$ Theta range for data collection		0.080
Parameters $\Delta\rho_{max}$ (eÅ ⁻³) 0.13 $\Delta\rho_{min}$ (eÅ ⁻³) 0.12	•	0.71, 0.84
$\Delta \rho_{\text{max}} \text{ (eA}^{-3}\text{)}$ $\Delta \rho_{\text{min}} \text{ (eÅ}^{-3}\text{)}$ Theta range for data collection -0.12		· ·
$\Delta \rho_{\min}$ (eA ⁻³) -0.12	$\Delta \rho_{\text{max}} (eA^{-3})$	
Theta range for data collection		
	Theta range for data collection	

[Downloaded from ijcm.ir on 2025-06-13]


Results and Discussion

The title compound 1 was obtained in high yield, 84%, by mixing equimolar amounts of salicylaldehyde and 2-chloro-4-nitroaniline. It was stable in the solid state for several days. The title compound is very slightly soluble in common organic solvents such as acetonitrile and methanol but completely soluble in chloroform and dichloromethane.

An ORTEP view of the structure of 1 obtained by the single-crystal X-ray diffraction is shown in Fig. 1. Compound 1 crystallizes in the space group P2₁ with two molecules in the asymmetric unit (Fig. 1).

Selected bond distances and angles of 1 are

listed in Table 2. Bond distances and angles around C=N group are in good agreement with those reports in similar o-hydroxy Schiff base compounds [1-5,7,9,10]. The molecule of 1 is nonplanar, with a dihedral angle between the two aromatic rings of 40.906(63)° and 39.642(67)° for the two symmetry independent cases. The bond distances of N1=C7 (1.291(3) Å), N3=C20 (1.291(3) Å), N1-C1 (1.401(3) Å) and N3-C14 (1.396(3) Å) are consistent with double and single bonds, respectively [1-5,7,9,10]. The bond angles C8-C7-N1 (121.3(2)°), C7-N1-C1 (119.92(19)°), $(121.3(2)^{\circ})$ and C21-C20-N3 C20-N3-C14 (120.7(2)°) consistent with the sp² hybrid character for C7, N1, C20 and N3 [1-5,7,9,10].

Fig. 1 The molecular structure of N-(2-chloro-4-nitro-phenyl)salicylaldehyde-imine with displacement ellipsoids drawn at 50% probability level. The H-bonds are indicated as dashed lines.

Table 2 Selected bond distances (Å) and angles (°) of 1.							
Cl1-N1	2.941(2)	N1-C1	1.401(3)				
C12-N3	2.935(2)	N1-C7	1.291(3)				
O1-N2	1.227(3)	N2-C4	1.464(3)				
O2-N2	1.226(3)	N3-C14	1.396(3)				
O4-N4	1.225(3)	N3-C20	1.291(3)				
O5-N4	1.227(3)	N4-C17	1.461(3)				
Cl1 N1 C1	66.91(11)	C11 N1 C7	146.15(14)				
C1 N1 C7	119.92(19)	O1 N2 O2	124.2(2)				
O1 N2 C4	118.1(2)	O2 N2 C4	117.7(2)				
Cl2 N3 C14	66.67(12)	C12 N3 C20	144.78(14)				
C14 N3 C20	120.7(2)	O4 N4 O5	123.7(2)				
O4 N4 C17	118.2(2)	O5 N4 C17	118.12(19)				
N1 C1 C2	118.5(2)	N1 C1 C6	123.2(2)				
N2 C4 C3	118.1(2)	N2 C4 C5	118.7(2)				
N1 C7 C8	121.3(2)	N3 C14 C15	118.9(2)				
N3 C14 C19	122.7(2)	N4 C17 C16	119.0(2)				
N4 C17 C18	118.7(2)	N3 C20 C21	121.3(2)				

The most pronounced feature causing the deviation from the non-centrosymmetric structure is the rotation of the NO₂ group with respect to the adjacent aromatic ring, 5.437(106)° 14.055(82)° for the two symmetry independent cases. We did also a simple test how similar are the two molecules with respect to the measured data. One of the molecules was described as a rigid body and we refined its atomic parameters plus translation and rotation transforming this molecule to the second molecule. Thus, in the test we refined two identical molecules. The R value increased from 0.031 to 0.057 and goodness of fit increased from 1.61 to 3.83 (using the same weighting

scheme for both attempts). This means that the molecules are very similar but the data still allows for their distinction.

Ortho position of the hydroxyl group to the imine group of Schiff base due to the existence of O-H···N hydrogen bond and tautomerism between enol-imine and keto-amine form [1,2,4,10]. Another inter-molecular non-classical hydrogen bonds of C-H···O (Table 3, Figs. 1,2) connect the adjacent molecules to one-dimensional supramolecular structure. Therefore, the hydrogen bonds of 1 probably play an important role in the molecular and crystal stabilities [5,11].

Table 3 Hydrogen-bond geometry (Å, °).

	tbre e rry are	gen dona gee	, , , , , , , , , , , , , , , , , , ,	
D-H···A	D-H	H···A	D···A	D-H···A
N1···H3-O3	0.845	1.836	2.591	147.955
N3···H6-O6	0.850	1.824	2.608	152.682
С3…Н3-О6	0.960	2.663	3.307	124.832
C24-H24···O4	0.960	2.551	3.252	130.025
C1-H11···O2	0.960	2.565	3.267	130.164

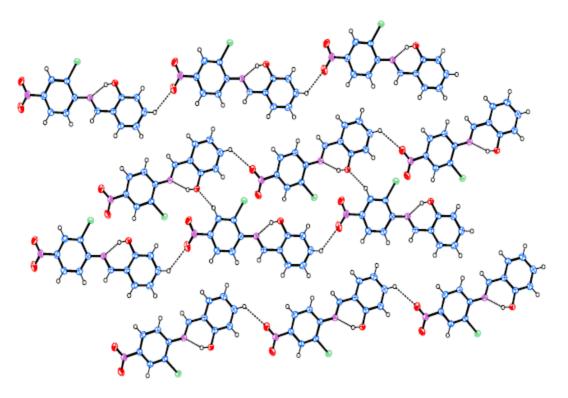


Fig. 2 The crystal packing of 1, as seen along the c axis. Hydrogen bonds are shown as dashed lines.

Supplementary data

Crystallographic data (excluding structure factors) for the structure reported in this paper has been deposited with the Cambridge Crystallographic Center, CCDC Nos. 940662. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44 1223 336 033, e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk.

Acknowledgements

We acknowledge the Golestan University (GU) for partial support of this work and the project Preamium Academiae of the Academy of Sciences (ASCR).

References

- [1] Dziembowska T., Szafran M., Katrusika A., Rozwadowski Z. "Crystal structure and solvent effect on tautomeric equilibrium in Schiff base derived from 2-hydroxy-1-naphthaldehyde and methylamine studied by X-ray diffraction, DFT, NMR and IR methods", J. Mol. Struct. 929 (2009) 32-42.
- [2] Unver H., Yildiz M., Ozay H., Durlu T.N. "Spectroscopic atudy and structure of (E)-2-[(2-chlorobenzylimino)methyl]methoxyphenol", Spectrochim. Acta A74 (2009) 1095-1099.
- [3] Jeseentharani V., Selvakumar J., Dayalan A., Varghese B., Nagaraja K.S. "Preparation, characterization and crystal structure of some imino Schiff bases", J. Mol. Struct. 966 (2010) 122-128.
- [4] Sun Y., Wang Y., Liu Z., Huang C., Yu C., "Structural, proton-transfer, thermodynamic and nonlinear optical studies of (E)-2-((2-hydroxyphenyl)iminomethyl)phenolate", Spectrochim. Acta A96 (2012) 42-50.
- [5] Wang Y., Yu Z., Sun Y., Wang Y., Lu L., "Synthesis, vibrational spectral and nonlinear optical studies of N-(4-hydroxy-phenyl)-2-hydroxybenzaldehyde-imine: A combined experimental and theoretical investigation", Spectrochim. Acta A79 (2011) 1475-1482.

- [6] Dalapati, S., Akhtarul Alam, Md., Jana, S., Guchhait, N. "Nacked-eye detection of F- and AcO- ions by Schiff base receptor", J. Flurine Chem. 132 (2011) 536-540.
- [7] Chattopadhyay, B., Basu, S., Chakraborty, P., Kumar Choudhuri, S., Mukherjee, A.K., Mukherjee, M. "Synthesis, spectroscopic characterization, X-ray powder structure analysis, DFT study and in vitro anticancer activity of N-(2-methoxyphenyl)-3-methoxysalicylaldimine" J. Mol. Struct. 932 (2009) 90-96.
- [8] Xu, H., Tao, X., Li, Y., Shen, Y., Wei, Y. "Synthesis, characterization and metal ion-sensing properties of two Schiff base derivatives", Spectrochim. Acta A91 (2012) 375-382.
- [9] Hijji Y.M., Barare, B., Kennedy A.P., Butcher R. "Synthesis and photophysical characterization of a Schiff base as anion sensor", Sensors & Actuators B136 (2009) 297-301.
- [10] Khalaji A.D., Najafi Chermahini A., Fejfarova K., Dusek M. "Synthesis, characterization, crystal structure, and theoretical studies on Schiff base compound 6-[(5-bromopyridin-2-yl)iminomethyl]phenol", Struct. Chem. 21 (2010) 153-157.
- [11] Khalaji, A.D., Mighani, H., Bijanzadeh, H.R., Gotoh, K., Ishida, H. "One dimensional hydrogen bonded arrangement in new Schiff-base compound (E)-2-(2,5-dimethoxybenzylideneamino)phenol
- (1): Synthesis, characterization, crystal structure and conformational studies", J. Chem. Cryst. 41 (2011) 1515-1519.
- [12] Khalaji A.D., Fejfarova K., Dusek M. "Synthesis and crystal structure of Schiff base compound (E)-4-methoxy-N-(4-hydroxybenzylidene)aniline", Iran. J. Cryst. Miner. 21 (2013) 5-10.
- [13] Khalaji A.D., Fejfarova K., Dusek M. "Synthesis and crystal structure of Schiff base compounds N-(3,4-dimethoxybenzylidene)-4-methoxyaniline (1) and N-(3,4-dimethoxybenzylidene)-4-ethoxyaniline (2)", J. Cryst. Miner. 19 (2011) 41-46.

[Downloaded from ijcm.ir on 2025-06-13]

- [14] Bhat K., Chang K.J., Aggarwal M.D., Wang W.S., Penn B.G., Frazier D.O., "Synthesis and characterization of various Schiff bases for non-linear optical applications", Mater. Chem. Phys. 44 (1996) 261-266.
- [15] Hadjoudis E, Vittorakis M, Moustakali-Mavridis I., "Photochromism and thermochromism of schiff bases in the solid state and in rigid glasses", Tetrahedron 43 (1987) 1345-1360.
- [16] Burla M.C., Camalli M, Carrozzini B, Cascarano G, Giacovazzo C, Polidori G, Spagna R, SIR2002: the program, J. Appl. Cryst. 36 (2003) 1103.
- [17] Petricek V, Dusek M, Palatinus L. Jana 2006. Structure determination software programs. Institute of Physics, Praha, Czech Republic (2008). [18] Farrugia L.J., ORTEP-3 for Windows a version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Cryst. 30 (1997) 565.